Limits of Conformal Immersions Under a Bound on a Fractional Normal Curvature Quantity

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Conformal Biharmonic Immersions

This paper studies conformal biharmonic immersions. We first study the transformations of Jacobi operator and the bitension field under conformal change of metrics. We then obtain an invariant equation for a conformal biharmonic immersion of a surface into Euclidean 3-space. As applications, we construct a 2-parameter family of non-minimal conformal biharmonic immersions of cylinder into R and ...

متن کامل

Conformal Immersions of Prescribed Mean Curvature in R3

We prove the existence of (branched) conformal immersions F : S → R with mean curvature H > 0 arbitrarily prescribed up to a 3-dimensional affine indeterminacy. A similar result is proved for the space forms S, H and partial results for surfaces of higher genus.

متن کامل

On conformal transformation of special curvature of Kropina metrics

      An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β  which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...

متن کامل

Conformal Immersions, and Gravity

Basic quantities related to 2-D gravity, such as Polyakov extrinsic action, Nambu-Goto action, geometrical action, and Euler characteristic are studied using generalized Weierstrass-Enneper (GWE) inducing of surfaces in R3. Connection of the GWE inducing with conformal immersion is made and various aspects of the theory are shown to be invariant under the modified VeselovNovikov hierarchy of fl...

متن کامل

Mean Curvature of Riemannian Immersions

1. Let M and M' denote complete riemannian manifolds of dimension n and m respectively, and suppose that M is compact and oriented. For simplicity we assume that both manifolds and their metrics are smooth (i.e. of class C). In terms of local co-ordinates (x, x, ...,x") on M and local co-ordinates (y,y, •••,/") on M', the riemannian metrics are written ds = gtJ dx l dx, ds' = g'aP dy* dy * wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Vietnam Journal of Mathematics

سال: 2020

ISSN: 2305-221X,2305-2228

DOI: 10.1007/s10013-020-00435-x